BC Calculus: Multiple Choice Worksheet 1 on Sequences and Series



NB: These problems should be done without a calculator.

Indicate the correct choice for each of the following:

  1. If \( \displaystyle \{s_n\} = \left\{ 1 + \frac{(-1)^n}{n} \right\} \), then
    1. \( \displaystyle \{s_n\} \) diverges by oscillation
    2. \( \displaystyle \{s_n\} \) converges to zero
    3. \( \displaystyle \lim_{n \to \infty} s_n = 1 \)
    4. \( \displaystyle \{s_n\} \) diverges to infinity
    5. None of the above is true
  2. Solution C
  3. The sequence \( \left\{ \sin{ \frac{n\pi}{6}} \right\} \)
    1. is unbounded
    2. is monotonic
    3. converges to a number less than 1
    4. is bounded
    5. diverges to infinity
  4. Solution D
  5. Which of the following sequences diverges?
    1. \( \displaystyle \left\{ \frac{1}{n} \right\} \)
    2. \( \displaystyle \left\{ \frac{(-1)^{n + 1}}{n} \right\} \)
    3. \( \displaystyle \left\{ \frac{2^n}{e^n} \right\} \)
    4. \( \displaystyle \left\{ \frac{n^2}{e^n} \right\} \)
    5. \( \displaystyle \left\{ \frac{n}{\ln{ n}} \right\}\)
  6. Solution E
  7. Which of the following statements about sequences is false?
    1. If \( \displaystyle \{s_n\}\) is bounded, then it is convergent.
    2. \( \displaystyle \lim_{n \to \infty} s_n = L \implies |s_n - L| < 0.001\) except for at most a finite number of \(n\)'s.
    3. If \( \displaystyle \{s_n\} \) converges, then \( \displaystyle \{s_n\} \)is bounded.
    4. If \( \displaystyle \{s_n\}\) is unbounded, then it diverges.
    5. None of the above.
  8. Solution A
  9. The sequence \( \displaystyle \{r^n \} \) converges if and only if
    1. \( \displaystyle |r| < 1 \)
    2. \( |r| \leq 1 \)
    3. \( \displaystyle -1 < r \leq 1 \)
    4. \( \displaystyle 0 < r < 1 \)
    5. \( \displaystyle |r| > 1\)
  10. Solution C
  11. The sequence \( \displaystyle \{s_n\}\) , where \( \displaystyle s_n = \frac{n}{n + 1}\), converges to 1. It follows then, if \( \displaystyle \epsilon > 0\), that there exists a positive integer \(N\) such that \( \displaystyle n > N \implies \left| s_n - 1 \right| < \epsilon\). Let \(\epsilon = 0.01\); then the least such \(N\) is
    1. 10
    2. 90
    3. 99
    4. 100
    5. 101
  12. Solution C
  13. \( \displaystyle \sum u_n\) is a series of constants for which \( \displaystyle \lim_{n \to \infty} u_n = 0\). Which of the following statements is always true?
    1. \( \displaystyle \sum u_n\) converges to a finite sum.
    2. \( \displaystyle \sum u_n = 0. \)
    3. \( \displaystyle \sum u_n\) does not diverge to infinity.
    4. \( \displaystyle \sum u_n\) is a positive series.
    5. None of the preceding.
  14. Solution E
  15. \( \displaystyle \sum_{n = 1}^{\infty} \frac{1}{n(n+1)} = \)
    1. \( \displaystyle \frac{4}{3} \)
    2. 1
    3. \( \displaystyle \frac{3}{2} \)
    4. \( \displaystyle \frac{3}{4} \)
    5. \( \displaystyle \infty\)
  16. Solution B
  17. The sum of the series \( \left( 2 - 1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - ... \right) \) is
    1. \( \displaystyle \frac{4}{3} \)
    2. \( \displaystyle \frac{5}{4} \)
    3. 1
    4. \( \displaystyle \frac{3}{2} \)
    5. \( \displaystyle \frac{3}{4}\)
  18. Solution A
  19. Which of the following statements about series is true?
    1. \( \displaystyle \lim_{n \to \infty} u_n = 0, \implies \sum u_n \) converges.
    2. \( \displaystyle \lim_{n \to \infty} u_n \neq 0 \implies \sum u_n \) converges.
    3. \( \displaystyle \sum u_n \) diverges \( \displaystyle \implies \lim_{n \to \infty} u_n \neq 0 . \)
    4. \( \displaystyle \sum u_n\) converges \( \displaystyle \iff \lim_{n \to \infty} u_n = 0. \)
    5. None of the preceding.
    Solution E
  20. Which of the following statements about series is false?
    1. \( \displaystyle \sum_{k = 1}^{\infty} u_k = \sum_{k = m}^{\infty} u_k\), where \(m\) is any positive integer.
    2. If \( \displaystyle \sum u_n \) converges, so does \( \displaystyle \sum c u_n\), if \(c \neq 0. \)
    3. If \( \displaystyle \sum a_n\) and \( \displaystyle \sum b_n\) converge, so does \( \displaystyle \sum (c a_n + b_n)\), where \( c \neq 0. \)
    4. If 1000 terms are added to a convergent series, the new series also converges.
    5. Rearranging the terms of a positive convergent series will not affect its convergence or its sum.
    Solution A
  21. Which of the following series converges?
    1. \( \displaystyle \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \)
    2. \( \displaystyle \sum_{n=1}^{\infty} \frac{1}{ \sqrt{n}} \)
    3. \( \displaystyle \sum_{n=1}^{\infty} \frac{1}{n} \)
    4. \( \displaystyle \sum_{n=1}^{\infty} \frac{1}{10n - 1} \)
    5. \( \displaystyle \sum_{n=1}^{\infty} \frac{2}{n^2 - 5}\)
    Solution E
  22. Which of the following series diverges?
    1. \( \displaystyle \sum_{n = 1}^{\infty} \frac{1}{n(n + 1)} \)
    2. \( \displaystyle \sum_{n = 1}^{\infty} \frac{n + 1}{n!} \)
    3. \( \displaystyle \sum _{n = 2}^{\infty} \frac{1}{n \ln{ n}} \)
    4. \( \displaystyle \sum_{n = 1}^{\infty} \frac{ \ln{ n}}{2^n} \)
    5. \( \displaystyle \sum_{n = 1}^{\infty} \frac{n }{2^n}\)
    Solution C
  23. Which of the following series diverges?
    1. \( \displaystyle \sum \frac{1}{n^2} \)
    2. \( \displaystyle \sum \frac{1}{n^2 + n} \)
    3. \( \displaystyle \sum \frac{n }{n^3 + 1} \)
    4. \( \displaystyle \sum \frac{n }{\sqrt{4n^2 - 1}} \)
    5. none of the preceding.
    Solution D
  24. For which of the following series does the Ratio Test fail?
    1. \( \displaystyle \sum \frac{1}{n!} \)
    2. \( \displaystyle \sum \frac{n}{2^n} \)
    3. \( \displaystyle 1 + \frac{1}{2^{\frac{3}{2}}} + \frac{1}{3^{\frac{3}{2}}} + \frac{1}{4^{\frac{3}{2}}} + ... \)
    4. \( \displaystyle \frac{\ln{ 2}}{2^2} + \frac{\ln{ 3}}{2^3} + \frac{\ln{ 4}}{2^4} + ... \)
    5. \( \displaystyle \sum \frac{n^n}{n!}\)
    Solution C
  25. Which of the following alternating series diverges?
    1. \( \displaystyle \sum (-1)^{n-1} \frac{1}{n} \)
    2. \( \displaystyle \sum (-1)^{n + 1}\frac{n - 1}{n + 1} \)
    3. \( \displaystyle \sum (-1)^{n + 1}\frac{1}{\ln{ (n + 1)}} \)
    4. \( \displaystyle \sum (-1)^{n-1}\frac{1}{\sqrt{n}} \)
    5. \( \displaystyle \sum (-1)^{n-1}\frac{n}{n^2 + 1}\)
    Solution B
  26. Which of the following series converges conditionally?
    1. \( \displaystyle 3 - 1 + \frac{1}{3} - \frac{1}{9} + ... \)
    2. \( \displaystyle \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - ... \)
    3. \( \displaystyle \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{4^2} - ... \)
    4. 1 - 1.1 + 1.21 - 1.331 + ...
    5. \( \displaystyle \frac{1}{1 \cdot2} - \frac{1}{2 \cdot3} + \frac{1}{3 \cdot4} - \frac{1}{4 \cdot5} + ...\)
  27. Solution B
  28. Let S =\( \displaystyle \sum_{n = 1}^{\infty} \left( \frac{2}{3} \right)^n\); then \(S =\)
    1. 1
    2. \( \displaystyle \frac{3}{2} \)
    3. \( \displaystyle \frac{4}{3} \)
    4. 2
    5. 3
    Solution D
  29. Which of the following statements is true?
    1. If a series converges, then it converges absolutely.
    2. If a series is truncated after the \(n\)th term, then the error is less than the first term ommitted.
    3. If the first terms of an alternating series decrease, then the series converges.
    4. If \( r < 1\), then \( \displaystyle \sum r^n\) converges.
    5. None of the preceding.
    Solution E
  30. Which of the following expansions is impossible?
    1. \( \displaystyle \sqrt{x - 1}\) in powers of \(x \)
    2. \(\sqrt{x + 1}\) in powers of \(x \)
    3. \( \displaystyle \ln{ x}\) in powers of \(x - 1 \)
    4. \( \displaystyle \tan {x}\) in powers of \(x - \frac{\pi}{4} \)
    5. \( \displaystyle \ln{ (1 - x)}\) in powers of \(x\)
  31. Solution A